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Abstract

We study the training of �nite-width two-layer smoothed ReLU networks for binary
classi�cation using the logistic loss. We show that gradient descent drives the training
loss to zero if the initial loss is small enough. When the data satis�es certain cluster and
separation conditions and the network is wide enough, we show that one step of gradient
descent reduces the loss su�ciently that the �rst result applies.

1 Introduction

The success of deep learning has led to a lot of recent interest in understanding the proper-
ties of �interpolating� neural network models, that achieve (near-)zero training loss [Zha+17a;
Bel+19]. One aspect of understanding these models is to theoretically characterize how �rst-
order gradient methods (with appropriate random initialization) seem to reliably �nd inter-
polating solutions to non-convex optimization problems.

In this paper, we show that, under two sets of conditions, training �xed-width two-layer
networks with gradient descent drives the logistic loss to zero. The networks have smooth
�Huberized� ReLUs [Tat+20 , see equation (1) and Figure 1] and the output weights are not
trained.

The �rst result only requires the assumption that the initial loss is small, but does not
require any assumption about either the width of the network or the number of samples. It
guarantees that if the initial loss is small then gradient descent drives the logistic loss to zero.

For our second result we assume that the inputs come from four clusters, two per class,
and that the clusters corresponding to the opposite labels are appropriately separated. Under
these assumptions, we show that random Gaussian initialization along with a single step of
gradient descent is enough to guarantee that the loss reduces su�ciently that the �rst result
applies.

A few proof ideas that facilitate our results are as follows: under our �rst set of assumptions,
when the loss is small, we show that the negative gradient aligns well with the parameter vector.
This yields a lower bound on the norm of the gradient in terms of the loss and the norm of the
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current weights. This implies that, if the weights are not too large, the loss is reduced rapidly at
the beginning of the gradient descent step. Exploiting the Huberization of the ReLUs, we also
show that the loss is a smooth function of the weights, so that the loss continues to decrease
rapidly throughout the step, as long as the step-size is not too big. Crucially, we show that
the loss is decreased signi�cantly compared with the size of the change to the weights. This
implies, in particular, that the norm of the weights does not increase by too much, so that
progress can continue.

The preceding analysis requires a small loss to �get going�. Our second result provides one
example when this provably happens. A two-layer network may be viewed as a weighted vote
over predictions made by the hidden units. Units only vote on examples that fall in halfspaces
where their activation functions are non-zero. When the network is randomly initialized, we
can think of each hidden unit as �capturing� roughly half of the examples�each example
is turn captured by roughly half of the hidden units. Some capturing events are helpful,
and some are harmful. At initialization, these are roughly equal. Using the properties of the
Gaussian initialization (including concentration and anti-concentration) we show that each
example (xs; ys) is captured by many nodes whose �rst updates contribute to improving its
loss. For this to happen, the updates for this example must not be o�set by updates for other
examples. This happens with su�cient probability at each individual node that the cumulative
e�ect of these �good� nodes overwhelms the e�ects of potentially confounding nodes, which
tend to cancel one another. Consequently, with2p hidden nodes, the loss after one iteration
is at most exp(� 
( p1=2� � )) for � > 0. By comparison, under similar, but weaker, clustering
assumptions, Li and Liang [LL18] used a neural tangent kernel (NTK) analysis to show that
the loss is1=poly(p) after poly(p) steps. Our proof uses more structure of the problem than
the NTK proof, for example, that (loosely speaking) the reduction in the loss is exponential
in the number of hidden units improved.

We work with smooth Huberized ReLUs to facilitate theoretical analysis. We analyze net-
works with Huberized ReLUs instead of the increasingly popular Swish [RZL18], which is also
a smooth approximation to the ReLU, to facilitate a simple analysis. We describe some pre-
liminary experiments with arti�cial data supporting our theoretical analysis, and suggesting
that networks with Huberized ReLUs behave similarly to networks with standard ReLUs.

Related results, under weaker assumptions, have been obtained for the quadratic loss [Du+18;
Du+19; ALS19; OS20], using the NTK [JGH18; COB19]. The logistic loss is qualitatively dif-
ferent; among other things, driving the logistic loss to zero requires the weights to go to in�nity,
far from their initial values, so that a Taylor approximation around the initial values cannot
be applied. The NTK framework has also been applied to analyze training with the logistic
loss. A typical result [LL18; ALS19; Zou+20] is that after poly(1=") updates, a network of
size/width poly(1=") achieves" loss. Thus to guarantee loss very close to zero, these analyses
require larger and larger networks. The reason for this appears to be that a key part of these
analyses is to show that a wider network can achieve a certain �xed loss by traveling a shorter
distance in parameter space. Since it seems that, to drive the logistic loss to zero with a �xed-
width network, the parameters must travel an unbounded distance, the NTK approach cannot
be applied to obtain the results of this paper.

In a recent paper, Lyu and Li [LL20] studied the margin maximization of ReLU networks
for the logistic loss. Lyu and Li [LL20] also proved the convergence of gradient descent to
zero, but that result requires positive homogeneity and smoothness, which rules out the ReLU
and similar nonlinearities like the Huberized ReLU studied here. Their results do apply in
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the case that the ReLU is raised to a power strictly greater than two. Lyu and Li used both
assumptions of positive homogeneity and smoothness to prove the results in their paper that
are most closely related to this paper, so that a substantially di�erent analysis was needed
here. (See, for example, the proof of Lemma E.7 of their paper.) As far as we know, the analysis
of the alignment between the negative gradient and the weights originated in their paper: in
this paper, we establish such alignment under weaker conditions.

Building on this work by Lyu and Li [ LL20], Ji and Telgarsky [JT20] studied �nite-width
deep ReLU neural networks and showed that starting from a small loss, gradient �ow coupled
with logistic loss leads to convergence of the directions of the parameter vectors. They also
demonstrate alignment between the parameter vector directions and the negative gradient.
However, they do not prove that the training loss converges to zero.

The remainder of the paper is organized as follows. In Section2 we introduce notation,
de�nitions, assumptions, and present both of our main results. We provide a proof of Theorem1
in Section 3 and we prove Theorem2 in Section 4. Section 5 is devoted to some numerical
simulations. Section 6 points to other related work and we conclude with a discussion in
Section 7.

2 Preliminaries and Main Results

This section includes notational conventions, a description of the setting, and the statements
of the main results.

2.1 Notation

Given a vector v, let kvk denote its Euclidean norm. Given a matrix M , let kM k denote
its Frobenius norm and kM kop denote its operator norm. For any k 2 N, we denote the set
f 1; : : : ; kg by [k]. For a number d of inputs, we denote the set of unit-length vectors inRd by
Sd� 1. Given an eventA, we let 1A denote the indicator of this event. The symbol^ is used to
denote the logical �AND" operation. At multiple points in the proof we will use the standard
�big Oh notation� [see, e.g.,Cor+09] to denote how certain quantities scale with the number
of hidden units (2p), while viewing all other problem parameters that are not speci�cally set
as a function of p as constants. We will useC1; C2; : : : to denote absolute constants whose
values are �xed throughout the paper, and c0; c1; : : : to denote �local� constants, which may
take di�erent values in di�erent contexts.

2.2 The Setting

We will analyze gradient descent applied to minimize the training loss of a two-layer network.
Let d be the number of inputs, and2p be the number of hidden nodes. We consider the case

that the weights connected to the output nodes are �xed:p of them take the value1, and the
other p take the value � 1.

We work with Huberized ReLUs that are de�ned as follows:

� (z) :=

8
<

:

0 if z < 0,
z2

2h if z 2 [0; h],
z � h=2 otherwise.

(1)

See Figure1. We set the value of the bandwidth parameterh = 1=p throughout the paper.
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Theorem 1. There is an absolute constantC1 > 0 such that, for all n � 2, for all p � 1,
for any initial parameters � (1) and dataset (x1; y1); : : : ; (xn ; yn ) 2 Sd� 1 � f� 1; 1g, for any
positive Q1 � eQ1 and positive Q2 � eQ2(Q1) (where eQ1 and eQ2 are de�ned in eqs. (6)-(7))
the following holds for allt � 1. If h = 1=p and each step-size� t = Q1 log2(1=L(� (t ) )) , and if
L (� (1) ) � 1

n1+ C 1
then, for all t � 1,

L (� (t ) ) �
L (� (1) )

Q2 � (t � 1) + 1
:

The proof of this theorem is presented in Section3 below.
We reiterate that this theorem makes no assumption about the number of hidden nodes

(p) and makes a mild assumption on the number of samples required (n � 2). The only other
constraint is that the initial loss needs to be smaller than1=n1+ C1 , for some universal constant
C1 > 0. Our choice of a time-varying step-size� t that grows with log2(1=L(� (t ) )) leads to an
upper bound on the loss that scales with1=t.

2.4 Clustered Data with Random Initialization

We next consider gradient descent after random initialization by showing that, after one it-
eration, � (1) has the favorable properties needed to apply Theorem1. We assume that all
trainable parameters are initialized by being chosen independently at random fromN (0; � 2).
Let � (0) be the initial value of the parameters and� 0 be the original step-size (which will be
chosen as a function ofp).

This analysis depends on cluster and separation conditions. We shall usek and ` to index
over the clusters (ranging from1 to 4), and s and q to index over individual samples (ranging
from 1 to n). We assume that the training data can be divided into four clustersK1; : : : ; K4.
All examples (xs; ys) in clusters K1 and K2 haveys = 1 and all examples(xs; ys) in clusters K3

and K4 have ys = � 1. For some cluster indexk, let yk be the label shared by all examples in
cluster Kk . With some abuse of notation we will often uses 2 K k to denote that the example
(xs; ys) belongs to the clusterKk .

We make the following assumptions about the clustered training data.

ˆ For " > 0, for each cluster Kk , we assumenk := jK k j satis�es (1=4 � " ) n � nk �
(1=4 + ") n:

ˆ Assume that kxsk = 1 for all s 2 [n].

ˆ For a radius r > 0, each clusterKk has a center� k with k� kk = 1 , such that for all
s 2 K k , kxs � � kk � r .

ˆ For a separation parameter � > 0, we assume that for allk; ` with yk 6= y` , � k � � ` � � .

Under these assumptions we demonstrate that with high probability random initialization
followed by one step of gradient descent leads to a network whose training loss is at most
exp

�
� 
( p1=2� � )

�
for � > 0. Theorem 1 then implies that gradient descent in the subsequent

steps leads to a solution with training loss approaching zero.

Theorem 2. For any � 2 (0; 1=2), there are absolute constantsC2; : : : ; C6 > 0 such that,
under the assumptions described above, the following holds for all� < 1=2 and n � 4. If
� < C 2, r < C 2, " < C 2, � 0 = 1

p1=2+ � , � = 1
p1=2+ �= 2 , h = 1

p , and p � logC3 (nd=� ) both of the
following hold:
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(a) With probability 1 � � ,
L (� (1) ) � exp(� C4p(1=2� � ) );

(b) if, for all t � 1, � t = C5 log2 (1=L(� ( t ) ))
p , then with probability 1 � � , for all t > 1,

L (� (t ) ) �
C6d

p1� 3� t
:

This theorem is proved in Section4. It shows that if the data satis�es the cluster and
separation conditions then the loss after a single step of gradient descent decreases by an
amount that is exponential in p1=2� � with high probability. This result only requires the
width p to be poly-logarithmic in the number of samples, input dimension and1=� .

3 Proof of Theorem 1

In this section, we prove Theorem1. Our proof is by induction. As mentioned in the introduc-
tion, the key lemma is a lower bound on the norm of the gradient. Our lower bound (Lemma10)
is in terms of the loss, and also the norm of the weights. Roughly speaking, for it to provide
leverage, we need that the loss is small relative to the size of the weights, or, in other words,
that the model doesn't excessively �waste weight�. The bound of Theorem1 accounts for the
amount of such wasted weight at initialization, so we do not need a wasted-weight assumption.
On the other hand, we need a condition on the wasted weight in our inductive hypothesis�we
need to prove that training does not increase the amount of wasted weight too much.

Lemma 10 also requires an upper bound on the step size � another part of the inductive
hypothesis ensures that this requirement is met throughout training.

Before the proof, we lay some groundwork. First, to simplify expressions, we reduce to the
case that the biases are zero. Then we establish some lemmas that will be used in the inductive
step, about the progress in an iteration, smoothness, etc. Finally, we applied these tools in the
inductive proof.

3.1 Reduction to the Zero-Bias Case

We �rst note that, applying a standard reduction, without loss of generality, we may assume

ˆ b1; : : : ; b2p are �xed to 0, and not trained, and

ˆ for all s; q, xs � xq � 0.

The idea is to adopt the view that the inputs have an additional component that acts as a
placeholder for the bias term, which allows us to view the bias term as another component of
vi . The details are in Appendix A. We will make the above assumptions from now on. Since
the bias terms are �xed at zero, for a matrix V whose rows are the weights of the hidden units,
we will refer to the resulting loss asL(V ), f � as f V , and so on. LetV (t ) be the tth iterate.

3.2 Additional De�nitions

De�nition 3. For all iterates t, de�ne L ts := L (V (t ) ; xs; ys) and let L t := 1
n

P n
s=1 L ts . Addi-

tionally for all t, de�ne r L t := r V L jV = V ( t ) . We will also user V ( t ) L to refer to the gradient
r V L jV = V ( t ) .
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De�nition 4. For any weight matrix V , de�ne

gs(V ) :=
1

1 + exp (ysf V (xs))
:

We often will usegs as shorthand forgs(V ) whenV can be determined from context. Further,
for all t 2 f 0; 1; : : :g, de�ne gts := gs(V (t ) ):

Informally, gs(V ) is the size of the contribution of examples to the gradient.

3.3 Technical Tools

In this subsection we assemble several technical tools required to prove Theorem1. The proofs
that are omitted in this subsection are presented in AppendixB.

We start with the following lemma, which is a slight variant of a standard inequality, and
provides a bound on the loss after a step of gradient descent when the loss function is locally
smooth. It is proved in Appendix B.1.

Lemma 5. For � t > 0, let V (t+1) = V (t ) � � t r L t . If, for all convex combinations W of V (t )

and V (t+1) , we havekr 2
W Lkop � M , then if � t � 1

3M , we have

L t+1 � L t �
5� t kr L t k2

6
:

To apply Lemma 5 we need to show that the loss functionL is smooth nearL t ; the following
lemma is a start. It is proved in Appendix B.2.

Lemma 6. If h = 1=p, for any weight matrix V 2 R2p� (d+1) , kr 2
V Lkop � 5pL(V ):

Next, we show that L changes slowly in general, and especially slowly when it is small. The
proof is in Appendix B.3.

Lemma 7. For any weight matrix V 2 R2p� (d+1) , kr V Lk �
p

2pminf L (V ); 1g:

The following lemma applies Lemma5 (along with Lemma 6) to show that if the step-size
at step t is small enough then the loss decreases by an amount that is proportional to the
squared norm of the gradient. Its proof is in AppendixB.4.

Lemma 8. If � t L t � 1
30p , then L t+1 � L t � 5� t kr L t k2

6 :

We need the following technical lemma which is proved in AppendixB.5.

Lemma 9. If  : (0; M ] ! R is a continuous, concave function such thatlim � ! 0+  (� ) exists.
Then the in�mum of

P n
i =1  (zi ) subject to z1; : : : ; zn > 0 and

P n
i =1 zi = M is  (M ) + ( n �

1) lim � ! 0+  (� ).

The next lemma establishes a lower bound on the norm of the gradient of the loss in the
later iterations.

Lemma 10. For all large enoughC1, for any t � 1, if L t � 1=n1+ C1 , then

kr L t k �
5L t log(1=Lt )

6kV (t )k
: (3)
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Proof Since

kr L t k = sup
a:kak=1

(r L t � a) � (r L t ) �

 
� V (t )

kV (t )k

!

;

we seek a lower bound on�r L t � V ( t )

kV ( t ) k
. We have

�r L t �
V (t )

kV (t )k
=

1
kV (t )k

X

i 2 [2p]

ui

n

nX

s=1

gtsys� 0(v(t )
i � xs)v(t )

i � xs

=
1

nkV (t )k

nX

s=1

gtsys

2

4
X

i 2 [2p]

ui � 0(v(t )
i � xs)(v(t )

i � xs)

3

5 :

Note that, by de�nition of the Huberized ReLU for any z 2 R, � (z) � � 0(z)z � � (z) + h=2,
and therefore,

�r L t �
V (t )

kV (t )k
=

1
nkV (t )k

nX

s=1

gts

2

4ys

X

i 2 [2p]

ui � (v(t )
i � xs)

3

5

+
1

nkV (t )k

nX

s=1

gts

2

4
X

i 2 [2p]

ysui

�
� 0(v(t )

i � xs)(v(t )
i � xs) � � (v(t )

i � xs)
�

3

5

�
1

nkV (t )k

nX

s=1

gts

2

4ys

X

i 2 [2p]

ui � (v(t )
i � xs)

3

5 �
1

nkV (t )k

nX

s=1

gts

0

@h
2

X

i 2 [2p]

jysui j

1

A

(i )
=

1
nkV (t )k

nX

s=1

gts

2

4ys

X

i 2 [2p]

ui � (v(t )
i � xs)

3

5 �
hp

nkV (t )k

nX

s=1

gts

(ii )
�

1
nkV (t )k

nX

s=1

gts

2

4ys

X

i 2 [2p]

ui � (v(t )
i � xs)

3

5 �
L t

kV (t )k

=
1

nkV (t )k

nX

s=1

ysf V ( t ) (xs)
1 + exp (ysf V ( t ) (xs))

�
L t

kV (t )k
; (4)

where (i ) follows asjysui j = 1 for all i 2 [2p] and the inequality in (ii ) follows sincegts � L ts

for all samples by Lemma20 and becauseh = 1=p.
For every samples, L ts = log (1 + exp ( � ysf V ( t ) (xs))) which implies

ysf V ( t ) (xs) = log
�

1
exp(L ts ) � 1

�
and

1
1 + exp (ysf V ( t ) (xs))

= 1 � exp(� L ts ):

Plugging this into inequality ( 4) we derive,

�r L t �
V (t )

kV (t )k
�

1
nkV (t )k

nX

s=1

(1 � exp(� L ts )) log
�

1
exp(L ts ) � 1

�
�

L t

kV (t )k
:
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Observe that the function (1 � exp(� z)) log
�

1
exp(z)� 1

�
is continuous and concave withlim z! 0+ (1�

exp(� z)) log
�

1
exp(z)� 1

�
= 0 . Also recall that

P
s L ts = L t n. Therefore by Lemma9,

�r L t �
V (t )

kV (t )k
�

1
kV (t )k

�
1 � exp(� L t n)

n
log

�
1

exp(L t n) � 1

�
� L t

�
: (5)

We know that for any z 2 [0; 1]

exp(z) � 1 + 2z and exp(� z) � 1 � z + z2:

Since L t � 1
n1+ C 1

and n � 2 for large enoughC1 these bounds on the exponential function
combined with inequality (5) yields

�r L t �
V (t )

kV (t )k
�

1
kV (t )k

�
(L t � nL 2

t ) log
�

1
2nL t

�
� L t

�

=
1

kV (t )k

�
L t log

�
1
L t

�
+ nL 2

t log(2n) � L t (1 + log(2n)) � nL 2
t log

�
1
L t

��

�
1

kV (t )k

�
L t log

�
1
L t

�
� L t (1 + log(2n)) � nL 2

t log
�

1
L t

��

=
L t log(1=Lt )

kV (t )k

�
1 �

1 + log(2) + log( n)
log(1=Lt )

� nL t

�
:

Recalling again that L t � 1
n1+ C 1

and n � 2,

�r L t �
V (t )

kV (t )k
�

L t log(1=Lt )
kV (t )k

�
1 �

1 + log(2) + log( n)
(1 + C1) log(n)

�
1

nC1

�

�
L t log(1=Lt )

kV (t )k

�
1 �

1 + 2 log(2)
(1 + C1) log(2)

�
1

2C1

�

�
5L t log(1=Lt )

6kV (t )k
;

where the �nal inequality holds for a large enough value ofC1.

We are now ready to prove our theorem.

3.4 The Proof

As mentioned above, the proof of Theorem1 is by induction. Given the initial weight matrix
V (1) and p, the values eQ1 and eQ2(Q1) can be chosen as stated below:

eQ1 = min

(
1

30pL1 log2 (1=L1)
;

108kV (1) k2

125L 1 log4 (1=L1)
;

e2

120p

)

and (6)

eQ2(Q1) =
125Q1L 1 log4(1=L1)

216kV (1) k2
: (7)

The proof goes through for any positiveQ1 � eQ1 and any positive Q2 � eQ2(Q1). Recall that
the sequence of step-sizes is given by� t = Q1 log2(1=Lt ). We will use the following multi-part
inductive hypothesis:
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(I1) L t � L 1
Q2 �(t � 1)+1 ;

(I2) � t L t � 1
30p ;

(I3) log2 (1=L t )
kV ( t ) k

� log2 (1=L1 )
kV (1) k

.

The base case is trivially true for the �rst and the third part of the inductive hypothesis. It
is true for the second part sinceQ1 � 1

30pL 1 log2 (1=L1 )
.

Now let us assume that the inductive hypothesis holds for a stept � 1 and prove that it
holds for the next step t + 1 . We start with Part I1.

Lemma 11. If the inductive hypothesis holds at stept then,

L t+1 �
L 1

Q2t + 1
:

Proof Since� t L t < 1=(30p) by applying Lemma 8

L t+1 � L t �
5� t

6
kr L t k2:

By the lower bound on the norm of the gradient established in Lemma10 since L t � L 1 �
1=n1+ C1 we have

L t+1 � L t �
125� t L 2

t log2(1=Lt )
216kV (t )k2

= L t �
125Q1L 2

t log4(1=Lt )
216kV (t )k2

� L t

�
1 �

125Q1L t log4(1=L1)
216kV (1) k2

�
; (8)

where the �nal inequality makes use of the third part of the inductive hypothesis. For any
z � 0, the quadratic function

z � z2 125Q1 log4(1=L1)
216kV (1) k2

is a monotonically increasing function in the interval
"

0;
108kV (1) k2

125Q1 log4(1=L1)

#

:

Thus, becauseL t � L 1
Q2 (t � 1)+1 , if L 1

Q2 (t � 1)+1 � 108kV (1) k2

125Q1 log4 (1=L1 )
, the RHS of (8) is bounded above

by its value when L t = L 1
Q2 (t � 1)+1 . But this is easy to check: by our choice of the constantQ1

we have,

Q1 � eQ1 �
108kV (1) k2

125L 1 log4(1=L1)

) L 1 �
108kV (1) k2

125Q1 log4(1=L1)

)
L 1

Q2(t � 1) + 1
�

108kV (1) k2

125Q1 log4(1=L1)
:
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Bounding the RHS of inequality (8) by using the worst case thatL t = L 1
Q2 (t � 1)+1 , we get

L t+1 �
L 1

Q2(t � 1) + 1

�
1 �

L 1

Q2(t � 1) + 1
125Q1 log4(1=L1)

216kV (1) k2

�

=
L 1

Q2t + 1

�
Q2t + 1

Q2(t � 1) + 1

� �
1 �

Q2

Q2(t � 1) + 1
125Q1L 1 log4(1=L1)

216Q2kV (1) k2

�

=
L 1

Q2t + 1

�
1 +

Q2

Q2(t � 1) + 1

� �
1 �

Q2

Q2(t � 1) + 1
125Q1L 1 log4(1=L1)

216Q2kV (1) k2

�

�
L 1

Q2t + 1

 

1 �
�

Q2

Q2(t � 1) + 1

� 2
!

�
sinceQ2 � 125Q1L 1 log4 (1=L1 )

216kV (1) k2

�

�
L 1

Q2t + 1
:

This establishes the desired upper bound on the loss at stept + 1 .

In the next lemma we ensure that the second part of the inductive hypothesis holds.

Lemma 12. Under the setting of Theorem1 if the induction hypothesis holds at stept then,

� t+1 L t+1 �
1

30p
:

Proof We know by the previous lemma that if the induction hypothesis holds at stept,
then L t+1 � L t � 1. The function z log2(1=z) is no more than 4=e2 for z 2 (0; 1]. Since
Q1 � e2=(120p) we have

� t+1 L t+1 = Q1L t+1 log2(1=Lt+1 ) �
1

30p
:

Finally, we shall establish that the third part of the inductive hypothesis holds.

Lemma 13. Under the setting of Theorem1 if the induction hypothesis holds at stept then,

log2
�

1
L t +1

�

kV (t+1) k
�

log2
�

1
L 1

�

kV (1) k
:
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Proof We know from Lemma 8 that L t+1 � L t
�
1 � 5� t kr L t k2=(6L t )

�
, and by the triangle

inequality kV (t+1) k � k V (t )k + � t kr L t k, hence

log2
�

1
L t +1

�

kV (t+1) k
�

log2

 
1

L t

�
1� 5� t

6L t
kr L t k2

�

!

kV (t )k + � t kr L t k

=

�
log

�
1

L t

�
� log

�
1 � 5� t

6L t
kr L t k2

�� 2

kV (t )k + � t kr L t k

=
log2

�
1

L t

�
� 2 log

�
1

L t

�
log

�
1 � 5� t

6L t
kr L t k2

�
+ log 2

�
1 � 5� t

6L t
kr L t k2

�

kV (t )k + � t kr L t k

(i )
�

log2
�

1
L t

�
 

1 �
2 log

�
1� 5� t

6L t
kr L t k2

�

log
�

1
L t

�

!

kV (t )k
�

1 + � t kr L t k
kV ( t ) k

�

(ii )
�

log2
�

1
L t

�

kV (t )k

8
>><

>>:

1 + 5� t kr L t k2

3L t log
�

1
L t

�

1 + � t kr L t k
kV ( t ) k

9
>>=

>>;
(9)

where in (i ) the lower bound follows as we are dropping a positive lower-order term, and(ii )
follows sincelog(1 � z) � � z for all z < 1 and

5� t

6L t
kr L t k2 �

10p� t L t

6
(by Lemma 7)

< 1

by the inductive hypothesis.
We want the term in curly brackets in inequality ( 9) to be at least 1, that is,

1 +
5� t kr L t k2

3L t log
�

1
L t

� � 1 +
� t kr L t k
kV (t )k

( kr L t k �
3L t log

�
1

L t

�

5kV (t )k
;

which follows from Lemma 10 which ensures that kr L t k � 5L t log(1=Lt )=(6kV (t )k) (since
5=6 � 3=5). Thus we can infer that

log2
�

1
L t +1

�

kV (t+1) k
�

log2
�

1
L t

�

kV (t )k
�

log2
�

1
L 1

�

kV (1) k
:

This proves that the ratio is lower bounded at stept + 1 by its initial value and establishes
our claim.

Combining the results of Lemmas11, 12 and 13 completes the proof of theorem.
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4 Proof of Theorem 2

The proof of Theorem2 has two parts. First, we analyze the �rst step and show that the loss
decreases by a factor that is exponentially large inp1=2� � . After this, we complete the proof
by invoking Theorem 1.

4.1 The E�ect of the Reduction on the Clusters

We reduce to the case that the bias terms are �xed at zero in the context of Theorem2. In
this case, we can assume the following without loss of generality:

ˆ b1; : : : ; b2p are �xed to 0, and not trained,

ˆ for all s, kxsk = 1 ,

ˆ for all s; q 2 [n], xs � xq � 0,

ˆ for all k; ` 2 [4] for yk 6= y` , � k � � ` � (1 + �) =2, and

ˆ for all s; k, s 2 K k , kxs � � kk � r=
p

2.

The details are in Appendix C.

4.2 Analysis of the Initial Step

Our analysis of the �rst step will make reference to the set of hidden units that �capture� an
example by a su�cient margin, further dividing them into helpful and harmful units.

De�nition 14. De�ne

I + s :=
n

i 2 [2p] : (ui = ys) ^
�

v(0)
i � xs � h + 4 � 0

�o
and

I � s :=
n

i 2 [2p] : (ui = � ys) ^
�

v(0)
i � xs � h + 4 � 0

�o
:

Next, we prove that the random initialization satis�es a number of properties with high
probability. (We will later show that they are su�cient for convergence.) The proof is in
Appendix D. (Recall that C2; : : : ; C4 are speci�ed in the statement of Theorem2. We also
remind the reader that su�ciently large C3 means that p is su�ciently large.)

Lemma 15. There exists a real-valued function� such that, for all (x1; y1); : : : ; (xn ; yn ) 2
Sd� 1 � f� 1; 1g, for all small enoughC2 and all large enoughC3, with probability 1 � � over
the draw of V (0) , all of the following hold.

1. For all s 2 [n],

X

i 2 I + s

v(0)
i � xs � p� (h; � 0; � ) � 1; and

X

i 2 I � s

v(0)
i � xs � p� (h; � 0; � ) + 1 :

13



2. For all sampless 2 [n],

(1=2 � o(1))p � j I + sj � (1=2 + o(1))p; and

(1=2 � o(1))p � j I � sj � (1=2 + o(1))p:

3. For all sampless 2 [n]

1
2

� o(1) � g0s �
1
2

+ o(1):

4. For all clusters k 2 [4],

jf i 2 [2p] : 8 s 2 K k ; i 2 I + s)gj �
�

1 �
p

r
2

� o(1)
�

p; and

jf i 2 [2p] : 8 s 2 K k ; i 2 I � s)gj �
�

1 �
p

r
2

� o(1)
�

p:

5. For all pairs s; q 2 [n] such that ys 6= yq,
�
�
�
n

i 2 [2p] : (i 2 I + s) ^
�

v(0)
i � xq � 0

�o �
�
� �

�
1
3

+
�
4

+ r + o(1)
�

p; and

�
�
�
n

i 2 [2p] : (i 2 I � s) ^
�

v(0)
i � xq � 0

�o �
�
� �

�
1
3

+
�
4

+ r + o(1)
�

p:

6. For all sampless 2 [n],
�
�
�
�

�
i 2 [2p] :

�
� � 0

�
1
2

+ 2(� + r )
�

� v(0)
i � xs � h + 4 � 0

�
^ (ui 6= ys)

� �
�
�
�

�

 p
2

�
p

�
(h + 5 � 0(2 + � + r ))

!

p:

7. The norm of the weight matrix after one iteration satis�es 3
5

q
d

p� � k V (1) k � 3
q

d
p� .

De�nition 16. If the random initialization satis�es all of the conditions of Lemma 15, let us
refer to the entire ensuing training process asa good run.

Armed with Lemma 15, it su�ces to show that the loss bounds of Theorem 2 hold on a
good run. For the rest of the proof, let us assume that we are analyzing a good run.

Lemma 17. For all small enoughC2 > 0, all large enoughC3 and all small enoughC4 > 0,
the loss after the initial step of gradient descent is bounded above as follows:

L 1 � exp
�

� C4p(1=2� � )
�

:

Proof Let us examine the loss of each example after one step. Consider an examples 2 [n].
Without loss of generality let us assume thatys = 1 and that it belongs to cluster Kk :

L 1s = log

 

1 + exp

 

�
2pX

i =1

ui � (v(1)
i � xs)

!!

:

Sinces is �xed and ys = 1 , we simplify the notation for I + s and I � s and de�ne their comple-
ments, dividing the hidden nodes into four groups:

14



1. I + where v(0)
i � xs � h + 4 � 0 and ui = 1 ;

2. I � where v(0)
i � xs � h + 4 � 0 and ui = � 1;

3. eI + where v(0)
i � xs < h + 4 � 0 and ui = 1 ;

4. eI � where v(0)
i � xs < h + 4 � 0 and ui = � 1.

We have

L 1s = log

0

@1 + exp

0

@�
X

i 2 I +

� (v(1)
i � xs) +

X

i 2 I �

� (v(1)
i � xs)

�
X

i 2 eI +

� (v(1)
i � xs) +

X

i 2 eI �

� (v(1)
i � xs)

1

A

1

A : (10)

By de�nition of the gradient descent update we have, for each nodei ,

v(1)
i � xs = v(0)

i � xs +
� 0ui

n

X

q:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs):

Note that the groups I + and I � are de�ned such that even after one step of gradient descent,
for any node i 2 I + [ I �

� (v(1)
i � xs) = v(1)

i � x � h=2: (11)

That is, v(1)
i � xs continues to lie in the linear region of� after the �rst step. To see this, notice

that for all q,
g0q; � 0(v(0)

i � xq); xq � xs 2 [0; 1];

and hencejv(1)
i � xs � v(0)

i � xsj � � 0.
Our proof will proceed using four steps. Each step analyzes the contribution of nodes in a

particular group. We give the outline here, deferring the proof of some parts to lemmas that
follow.

Steps 1 and 2:In Lemma 18 we will show that, for an absolute constantc,
X

i 2 I +

� (v(1)
i � xs) � p� (h; � 0; � ) +

� 0p
48

�
1 � c(� +

p
r + ") � o(1)

�
� 2 (12)

and
X

i 2 I �

� (v(1)
i � xs) � p� (h; � 0; � ) �

� 0p
48

�
1 � c(� +

p
r + ") � o(1)

�
+ 2 : (13)

Step 3: Since the Huberized ReLU is non-negative a simple bound on the contribution of
nodes in eI + is

P
i 2 eI +

� (v(1)
i � xk ) � 0.

Step 4:Finally in Lemma 19we will show that the contribution of the nodes in eI � is bounded
above by

X

i 2 eI �

� (v(1)
i � xs) �

p
2

�
p

�
(h + 5 � 0(2 + � + r ))2 p: (14)
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Combining the bounds in inequalities (12), (13) and (14) with the decomposition of the loss
in (10) we infer,

L 1s � log

 

1 + exp

 

�
� 0p
24

�
1 � c(� +

p
r + ") � o(1)

�
+

p
2

�
p

�
(h + 5 � 0(2 + � + r ))2 p

!!

� log
�

1 + exp
�

�
� 0p
24

�
1 � c(� +

p
r + ") � o(1)

� ��
;

sinceh = o(� 0), and � 0 = o(� ). Now since� ; r; " < C 2, whereC2 is a small enough constant,
� 0 = 1=p1=2+ � and becausep is bigger than a suitably large constant we have,

L 1s � log (1 + exp ( � C4� 0p)) = log
�

1 + exp
�

� C4p1=2� �
��

� exp
�

� C4p1=2� �
�

:

Recall that the samples was chosen without loss of generality above. Therefore, by averaging
over the n samples we have

L 1 =
1
n

nX

s=1

L 1s � exp
�

� C4p1=2� �
�

establishing our claim.

Next, as promised in the proof of Lemma17, we bound the contribution due to the nodes in
I + and I � after one step.

Lemma 18. Borrowing all notation from the proof of Lemma 17 above, for all small enough
C2 and large enoughC3, there is an absolute constantc such that, on a good run

X

i 2 I +

� (v(1)
i � xs) � p� (h; � 0; � ) +

� 0p
48

�
1 � c(� +

p
r + ") � o(1)

�
� 2; and

X

i 2 I �

� (v(1)
i � xs) � p� (h; � 0; � ) �

� 0p
48

�
1 � c(� +

p
r + ") � o(1)

�
+ 2 :

Proof We begin by analyzing the contribution of nodes in groupI + .

X

i 2 I +

� (v(1)
i � xs)

=
X

i 2 I +

�

0

B
@v(0)

i � xs +
� 0

n

X

q:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A

=
X

i 2 I +

0

B
@v(0)

i � xs +
� 0

n

X

q:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A �

hjI + j
2

(since thei 2 I + satisfy (11))

=
X

i 2 I +

0

B
@v(0)

i � xs +
� 0g0s

n
+

� 0

n

X

q6= s:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A �

hjI + j
2

:
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Since we are analyzing a good run, Parts1 and 2 of Lemma 15 imply that
P

i 2 I +
v(0)

i � xk �
p� (h; � 0; � ) � 1 and that hjI + j � 1=2 + o(1), therefore, for p larger than a constant,

X

i 2 I +

� (v(1)
i � xs)

� p� (h; � 0; � ) +
� 0

n

X

i 2 I +

0

B
@g0s +

X

q6= s:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A � 2

� p� (h; � 0; � ) +
� 0

n

0

B
@

X

i 2 I +

g0s +
X

i 2 I +

X

q2K k �f sg;v(0)
i �xq � h

g0q(xq � xs)

�
X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

g0q� 0(v(0)
i � xq)(xq � xs)

1

C
A � 2 (15)

where the previous inequality above follows in part by recalling thats 2 K k where yk = 1 ,
and noting that, since xs � xq � 0 for all pairs, we can ignore contributions that haveyq = 1 .
Evolving this further

X

i 2 I +

� (v(1)
i � xs)

(i )
� p� (h; � 0; � ) +

� 0

n

0

B
@

X

i 2 I +

g0s +
X

i 2 I +

X

q:q2K k �f sg;v(0)
i �xq � h

g0q(1 � 2r )

�
X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

g0q� 0(v(0)
i � xq)(xq � xs)

1

C
A � 2

(ii )
� p� (h; � 0; � ) +

� 0

n

0

B
B
B
B
B
B
@

X

i 2 I +

g0s +
X

i 2 I +

X

q:q2K k �f sg;v(0)
i �xq � h

g0q(1 � 2r )

| {z }
=:� 1

�
X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

g0q(xq � xs)

| {z }
=:� 2

1

C
C
C
C
C
C
A

� 2; (16)

where(i ) follows since, whens and q are in the same cluster,xs � xq � 1 � 2r (which is proved
in Lemma 21 below) and (ii ) follows since� is 1-Lipschitz. Next we provide a lower bound on
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the term � 1

� 1 =
X

i 2 I +

g0s +
X

i 2 I +

X

q2K k �f sg;v(0)
i �xq � h

g0q(1 � 2r )

= g0sjI + j +
X

i 2 I +

X

q2K k �f sg;v(0)
i �xq � h

g0q(1 � 2r )

(i )
�

�
1
2

� o(1)
�

jI + j

+
�

1
2

� o(1)
�

(1 � 2r )
X

q:q2K k �f sg

�
�
�
n

i 2 [2p] : i 2 I + and v(0)
i � xq � h

o �
�
�

(ii )
�

�
1
2

� o(1)
� ��

1
2

� o(1)
�

p + (1 � 2r )( jK k j � 1)
�

1 �
p

r
2

� o(1)
�

p
�

�
�

1
2

� o(1)
�

jK k j(1 � 2r )
�

1 �
p

r
2

� o(1)
�

p

(iii )
�

�
1
2

� o(1)
� �

1
4

� "
�

(1 � 2r )
�

1 �
p

r
2

� o(1)
�

np

(iv )
�

1
16

�
1 � c1(

p
r + ") � o(1)

�
np; (17)

for an absolute positive constantc1, where(i ) follows since, by Part3 of Lemma15, on a good
run, g0s � 1=2 � o(1) for all samples,(ii ) follows by using Parts 2 and 4 of Lemma 15, (iii )
is by the assumption that jK k j � (1=4 � " )n and the simpli�cation in (iv ) follows since both
r; " < C 2 for a small enough constantC2.

Now we upper bound� 2 to get,

� 2 =
X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

g0q(xq � xs)

(i )
�

�
1
2

+ o(1)
� X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

xq � xs

(ii )
�

�
1
2

+ o(1)
� X

i 2 I +

X

q:v(0)
i �xq � 0;yq= � 1

�
1 + �

2
+ 2 r

�

=
�

1
2

+ o(1)
� �

1 + �
2

+ 2 r
� X

q:yq= � 1

�
�
�
n

i 2 [2p] : i 2 I + and v(0)
i � xq � 0

o �
�
�

(iii )
�

�
1
2

+ o(1)
� �

1 + � + 4 r
2

�
(jK 3j + jK 4j)

�
1
3

+
�
4

+ r + o(1)
�

p

(iv )
�

�
1
2

+ o(1)
� �

1 + � + 4 r
2

� �
1
2

+ 2 "
� �

1
3

+
�
4

+ r + o(1)
�

np

(v)
�

(1 + c2(� + r + ") + o(1)) np
24

; (18)

for an absolute positive constantc2, where (i ) follows as, by Part 3 of Lemma 15, on a good
run, for all samplesg0q � 1=2 + o(1), (ii ) follows from the fact that, for q and s from opposite
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classes,xq � xs � 1+�
2 + 2 r (which is proved in Lemma21 below), (iii ) is obtained by invoking

Part 5 of Lemma 15, (iv ) is by the assumption that all clusters have at most(1=4 + ")n
examples and the simpli�cation in (v) follows since� ; r; " < C 2 where C2 is a small enough
constant.

Combining the conclusion of inequality (16) with the bounds in (17) and (18) completes the
proof of the �rst part of the lemma:

X

i 2 I +

� (v(1)
i � xs) � p� (h; � 0; � ) +

� 0p
48

�
1 � c3(� +

p
r + ") � o(1)

�
� 2:

Now we move on to analyzing the contribution of the groupI � .

X

i 2 I �

� (v(1)
i � xs) �

X

i 2 I �

�
v(1)

i � xs

�

=
X

i 2 I �

0

B
@v(0)

i � xs �
� 0

n

X

q:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A

(i )
�

X

i 2 I �

v(0)
i � xs �

� 0

n

0

B
@

X

i 2 I �

g0s +
X

i 2 I �

X

q2K k �f sg;v(0)
i �xq � h

g0q(xq � xs)

1

C
A

+
� 0

n

X

i 2 I �

X

q:v(0)
i �xq � 0;yq= � 1

g0q� 0(v(0)
i � xq)(xq � xq)

(ii )
� p� (h; � 0; p) �

� 0

n

0

B
@

X

i 2 I �

g0s +
X

i 2 I �

X

q2K k �f sg;v(0)
i �xq � h

g0q(xq � xs)

+
X

i 2 I �

X

q:v(0)
i �xq � 0;yq= � 1

g0q� 0(v(0)
i � xq)(xq � xq)

1

C
A + 1 ;

where (i ) follows by noting that xs � xq � 0 for all pairs, therefore we can ignore contributions
that have yq = 1 , and (ii ) is by Part 1 of Lemma 15. Now by using an argument that is
identical to that in �rst part of the proof that bounded the contribution of I + above starting
from inequality ( 15) we conclude

X

i 2 I �

� (v(1)
i � xs) � p� (h; � 0; � ) �

� 0p
48

�
1 � c3(� +

p
r + ") � o(1)

�
+ 2 :

This establishes our bound on the contribution of the nodes inI � .

In the following lemma we bound the contribution of the nodes ineI � de�ned in the proof of
Lemma 17.

Lemma 19. Borrowing all notation from the proof of Lemma 17 above, on a good run,

X

i 2 eI �

� (v(1)
i � xs) �

p
2

�
p

�
(h + 5 � 0(2 + � + r ))2 p:
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Proof Recalling that v(1)
i is obtained by taking a gradient step

X

i 2 eI �

� (v(1)
i � xs)

=
X

i 2 eI �

�

0

B
@v(0)

i � xs �
� 0

n

X

q:v(0)
i �xq � 0

yqg0q� 0(v(0)
i � xq)(xq � xs)

1

C
A

(i )
�

X

i 2 eI �

�

0

B
@v(0)

i � xs +
� 0

n

X

q:v(0)
i �xq � 0;yq= � 1

g0q� 0(v(0)
i � xq)(xq � xs)

1

C
A

(ii )
�

X

i 2 eI �

�

0

B
@v(0)

i � xs +
� 0

n

X

q:v(0)
i �xq � 0;yq= � 1

(xq � xs)

1

C
A

(iii )
�

X

i 2 eI �

�
�

v(0)
i � xs +

� 0

n

�
n

�
1
2

+
�
2

+ 2 r
���

�
X

i 2 eI �

�
�

v(0)
i � xs + � 0

�
1
2

+ 2 (� + r )
��

(iv )
�

�
�
�
�

�
i 2 [p + 1 ; : : : ; 2p] : � � 0

�
1
2

+ 2(� + r )
�

� v(0)
i � xs � h + 4 � 0

� �
�
�
�

�
�

h + 4 � 0 + � 0

�
1
2

+ 2(� + r )
��

(v)
�

 p
2

�
p

�
(h + 5 � 0(2 + � + r ))

!

p �
�

h + 4 � 0 + � 0

�
1
2

+ 2(� + r )
��

�

p
2

�
p

�
(h + 5 � 0(2 + � + r ))2 p;

where (i ) follows by discarding the contribution of the examples with the same labelyq = 1 ,
(ii ) is becauseg0` and � 0 are non-negative and bounded by1, (iii ) follows by the bound
xq � xs � (1 + � + 4 r )=2 established in Lemma21 below. Inequality (iv ) follows from the facts

that � (z) = 0 for all z < 0 and v(0)
i � xs � h + 4 � 0 for all i 2 eI + , and �nally (v) follows from

Part 6 of Lemma 15. This establishes the claim.

4.3 Proof of Theorem 2

Having analyzed the �rst step we are now ready to prove Theorem2.
Part (a) of the theorem follows by invoking Lemma17 that shows that after the �rst step

L 1 � exp
�
� C4p(1=2� � )

�
with probability at least 1 � � .

Part (b) of the theorem shall follow by invoking Theorem1. Since p � logC3 (nd=� ) for a
large enough constantC3 we know that L 1 � 1=n1+ C1 as required by Theorem1. Also note

that Part 7 of Lemma 15 ensures that on a good run,35
q

d
p� � k V (1) k � 3

q
d

p� .
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Set the value ofQ1 = e2

120p . (This sets the step-size� t = Q1 log2(1=Lt ) = e2 log2 (1=L t )
120p .) To

invoke Theorem1 we need to ensure thatQ1 � eQ1 (see its de�nition in equation (6)), but this
is easy to check since

eQ1 = min

(
1

30pL1 log2 (1=L1)
;

108kV (1) k2

125L 1 log4 (1=L1)
;

e2

120p

)

� min

(
exp(C4p(1=2� � ) )

30C2
4p2� 2� ;

972dexp(C4p(1=2� � ) )
3125C4

4p2� 3� ;
e2

120p

)

(since L 1 � exp
�
� C4p(1=2� � )

�
and kV (1) k � 3

5

q
d

p� )

=
e2

120p
;

where the �nal equality holds sincep � logC3 d. Next we setQ2 = eQ2(Q1) (recall its de�nition
from equation (7) above):

Q2 = eQ2(Q1) =
125Q1L 1 log4(1=L1)

216kV (1) k2
:

With these valid choices ofQ1 and Q2 we now invoke Theorem1 to get that, for all t > 1

L t �
L 1

Q2 � (t � 1) + 1

�
L 1

125Q1L 1 log4 (1=L1 )p� (t � 1)
1944d + 1

(since kV (1) k � 3
q

d
p� )

=
L 1

c1L 1 log4 (1=L1 )( t � 1)
dp1� � + 1

�
L 1

max
n

c1L 1 log4 (1=L1 )( t � 1)
dp1� � ; 1

o

= min
�

dp1� �

c1 log4(1=L1)( t � 1)
; L 1

�

� min
�

dp1� �

c1C4
4p2� 4� (t � 1)

; L 1

�

= min
�

d
c2p1� 3� (t � 1)

; L 1

�
:

Combining this with Part (a), together with the assumption that p � logC3 d, proves Part (b).

5 Simulations

In this section, we experimentally verify the convergence results of Theorem1. We performed
100 rounds of batch gradient descent to minimize the softmax loss on random training data.
The training data was for a two-class classi�cation problem. There were128random examples
drawn from a distribution in which each of two equally likely classes was distributed as a
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6 Additional Related Work

Chizat, Oyallon, and Bach [COB19] analyzed gradient �ow for a general class of smoothly
parameterized models, showing that scaling up the initialization, while scaling down the loss,
ensures that a �rst-order Taylor approximation around the initial solution remains accurate
until convergence.

Chizat and Bach [CB20], building on [CB18; MMM19], show that in�nitely wide two-layer
squared ReLU networks trained with gradient �ow on the logistic loss leads to a max-margin
classi�er in a particular non-Hilbertian space of functions. (See also the videos in a talk about
this work [Chi20].) Brutzkus et al. [Bru+18 ] show that �nite-width two-layer leaky ReLU
networks can be trained up to zero-loss using stochastic gradient descent with the hinge loss,
when the underlying data is linearly separable.

The papers [BG19; Wei+19; JT19b] identify when it is possible to e�ciently learn XOR-type
data using neural networks with stochastic gradient descent on the logistic loss.

Chen et al. [Che+20] analyzed regularized training with gradient �ow on in�nitely wide
networks. When training is regularized, the weights also may travel far from their initial
values.

Our study is motivated in part by the line of work that has emerged which emphasizes
the need to understand the behavior of interpolating (zero training loss/error) classi�ers and
regressors [see, e.g.,Zha+17a; Bel+19, among others]. A number of recent papers have analyzed
the properties of interpolating methods in linear regression [Has+19; Bar+20; Mut+20b ; TB20;
BL20], linear classi�cation [Mon+19; CL21; LS20; Mut+20a ; HMX20], kernel regression [LR20;
MM19; LRZ20] and simplicial nearest neighbor methods [BHM18].

Also related are the papers that study the implicit bias of gradient methods [NTS15; Sou+18;
JT19c; Gun+18a; Gun+18b; LMZ18; Aro+19a; JT19a].

A number of recent papers also theoretically study the optimization of neural networks in-
cluding [And+14 ; LY17; Zho+17; Zha+17b; GLM18; PSZ18; Du+18; SS18; Zha+19; Aro+19b ;
Dan20; DM20; BN20].

In particular, the proof of Daniely and Malach [DM20] demonstrated that the �rst iteration
of gradient descent learned useful features for the parity-learning problem studied there.

7 Discussion

We demonstrated that gradient descent drives the logistic loss of �nite-width two-layer Huber-
ized ReLU networks to zero if the initial loss is small enough. This result makes no assumptions
about the width or the number of samples. We also showed that when the data is structured,
and the data satis�es certain cluster and separation conditions, random initialization followed
by gradient descent drives the loss to zero.

After a preliminary version of this paper was posted on arXiv [CLB20], related results
were obtained [CLB21] for deep networks with smoothed approximations to the ReLU, under
conditions that include Swish. This analysis included adapting the NTK techniques to these
activation functions. This provides a broader set of circumstances under which Theorem1 of
this paper can be applied.

Another interesting way forward would be to examine whether the loss can be shown to
decrease super-polynomially with the width when there are more than two clusters per label
or if the number of samples per cluster is imbalanced.
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It would be interesting to see if the corresponding results hold for ReLU activations, which,
despite the success of Swish, remain popular.

Now that we have established conditions under which gradient descent can drive the training
error to zero, future work could study the implicit bias of this limit and potentially use this
to study the generalization behavior of the �nal interpolating solution. One step towards this
could be establish a more precise directional alignment result to show that gradient descent
maximizes the margin of Huberized ReLU networks for logistic loss [asLL20; JT20, did for
ReLU networks trained using gradient �ow].

Theorems1 and 2 use a concrete choice of a learning rate schedule (at least, up to a constant
factor). We believe that our techniques can be extended to apply to a wider variety of learning-
rate schedules, with corresponding changes to the convergence rate.

In our paper, we assumed that the features are all unit-length vectors to simplify the proofs.
We believe that the results of Theorem1 can be easily extended to the case where the features
have arbitrary bounded lengths. We also expect that the results of Theorem2 can be extended
to the case where the examples in the four clusters are drawn from sub-Gaussian distributions
with suitably small variances.
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A Reduction to the Case of No Bias

Denoting the components ofxs by xs1; : : : ; xsd, de�ne ~xs = ( xs1=
p

2; : : : ; xsd=
p

2; 1=
p

2). We
consider the process of training a model using(~x1; y1); : : : ; (~xn ; yn ).

Consider
(� (1) ; eV (1) ); (� (2) ; eV (2) ); : : :

de�ned as follows. First, � (1) ; � (2) ; : : : are generated as described in Section2. Each row ~v(1)
i of

eV (1) 2 R2p� (d+1) is
p

2(v(1)
i 1 ; : : : ; v(1)

id ; b(1)
i ).

De�ne eL to be, informally, L , but without the bias terms, and applied to

(~x1; y1); : : : ; (~xn ; yn ):

That is

eL( eV ) :=
1
n

nX

s=1

log

 

1 + exp

 

� ys

2pX

i =1

ui � (~vi � ~xs)

!!

:

Then, for ~� 1 = 2 � 1; ~� 2 = 2 � 2; : : : > 0, we de�ne eV (2) ; eV (3) ; : : : to be the iterates of gradient
descent applied toeL , except replacing� 1; � 2; : : : by ~� 1; ~� 2; : : :.

We claim that, for all t,

ˆ for all i , ~v(t )
i =

p
2(v(t )

i 1 ; : : : ; v(t )
id ; b(t )

i )

ˆ for all i and all s, ~v(t )
i � ~xs = v(t )

i � xs + b(t )
i , so that eL( eV (t ) ) = L(� (t ) ).

25



The �rst condition is easily seen to imply the second. Further, the �rst condition holds at
t = 1 by construction. What remains is to prove that the inductive hypothesis for iteration t
implies the �rst condition at iteration t + 1 . If f V is the function computed by the network
with weights V and no biases, we have

~v(t+1)
i = ~v(t )

i + ~� t

nX

s=1

1

1 + exp(ysf (t )
eV

(~xs))
� 0(~v(t )

i � ~xs)ysui ~xs

=
p

2(v(t )
i 1 ; : : : ; v(t )

id ; b(t )
i ) + ~� t

nX

s=1

1

1 + exp(ysf (t )
� (xs))

� 0(v(t )
i � xs + b(t )

i )ysui ~xs

(by the inductive hypothesis)

=
p

2(v(t+1)
i 1 ; : : : ; v(t+1)

id ; b(t+1)
i );

because~xs = ( xs1=
p

2; : : : ; xsd=
p

2; 1=
p

2) and ~� t = 2 � t , completing the induction.
Finally, note that

~xs � ~xq =
xs � xq + 1

2
� 0;

sincexs and xq are unit length.

B Omitted Proofs from Section 3.3

In this section we provide proofs of Lemmas5-8.

B.1 Proof of Lemma 5

Lemma 5. For � t > 0, let V (t+1) = V (t ) � � t r L t . If, for all convex combinations W of V (t )

and V (t+1) , we havekr 2
W Lkop � M , then if � t � 1

3M , we have

L t+1 � L t �
5� t kr L t k2

6
:

Proof For any W 2 [V (t ) ; V t+1 ] we have that

r W L(W ) � r L t =
Z 1

0

�
r 2

�W L j �W = sV ( t ) +(1 � s)W

�
(W � V (t ) ) ds;

where, as stated above, the weak Hessian is de�ned using the weak derivative of � 0. Thus,

kr W L(W ) � r L t k �

"

sup
s2 [0;1]



 r 2

�W L j �W = sV ( t ) +(1 � s)W





op

#

kW � V (t )k � M kW � V (t )k:

This shows that along the line segment joiningV (t ) to V (t+1) the function is M -smooth.
Therefore, by using a standard argument [see, e.g,Bub15, Lemma 3.4] we get that

L t+1 � L t + r L t � (V (t+1) � V (t ) ) +
M
2

kV (t+1) � V (t )k2

= L t � � t kr L t k2 +
� 2

t M
2

kr L t k2

= L t � � t

�
1 �

� t M
2

�
kr L t k2

� L t �
5� t kr L t k2

6
:
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This completes the proof.

B.2 Proof of Lemma 6

Lemma 6. If h = 1=p, for any weight matrix V 2 R2p� (d+1) , kr 2
V Lkop � 5pL(V ):

Proof We know that the gradient of the loss with respect tovi is

r vi L =
� ui

n

nX

s=1

� 0(vi � xs)ysxs

1 + exp (ysf V (xs))
:

The weak Hessianr 2L is a block matrix with 4p2 blocks, where the(i; j )th block is r vi r vj L.
First, if i 6= j

r vi r vj L =
ui uj

n

nX

s=1

� 0(vi � xs)� 0(vj � xs) exp(ysf V (xs))

(1 + exp ( ysf V (xs))) 2 xsx>
s : (19)

If i = j ,

r 2
vi

L =
1
n

nX

s=1

�
� ui  (vi � xs)ys

1 + exp (ysf V (xs))
+

� 0(vi � xs)2 exp(ysf V (xs))

(1 + exp ( ysf V (xs))) 2

�
xsx>

s : (20)

By de�nition of the operator norm,

kr 2
V Lkop = sup

a:kak=1


 �

r 2
V L

�
a

 : (21)

Let a be a unit length member ofR2p(d+1) and let us decomposea into segmentsa1; : : : ; a2p

of (d + 1) components each, so thata is the concatenation ofa1; : : : ; a2p 2 Rd+1 . Note thatP 2p
i =1 kai k2 = 1 .
The squared norm of(r 2L)a is


 (r 2L)a


 2

=
X

i 2 [2p]








X

j 2 [2p]

�
r vi r vj L

�
aj








2

=
X

i;j;k 2 [2p]

a>
k

�
(r vi r vk L)

�
r vi r vj L

��
aj

�
X

i;j;k 2 [2p]

kaj kkakkkr vi r vk Lkopkr vi r vj Lkop: (22)

By de�nition of the Huberized ReLU (in equation ( 1)) and its weak Hessian (in equation (2))
we know that, for any z 2 R, j� 0(z)j < 1 and j (z)j < 1=h. Further, by Lemma 20, we know
that for all s

exp(ysf V (xs))

(1 + exp ( ysf V (xs))) 2 �
1

1 + exp (ysf V (xs))
� L (V ; xs; ys) = log(1 + exp( � ysf V (xs))) :
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Also recall that for all s 2 [n], kxsk = 1 and for all i 2 [2p], jui j = 1 . Applying these to
equation (19), when i 6= j we get that

k
�
r vi r vj L

�
kop � L; (23)

and, using equation (20), when i = j yields the bound

kr 2
vi

Lkop � L
�

1 +
1
h

�
� 2L=h: (24)

Returning to inequality ( 22),


 (r 2L)a


 2

�
X

i;j;k 2 [2p]

kaj kkakkkr vi r vk Lkopkr vi r vj Lkop

=
X

i;j;k 2 [2p]:i = j = k

kaj k2kr 2
vi

Lk2
op

+
X

i;j;k 2 [2p]:( i 6= j )^ (i 6= k)

kaj kkakkkr vi r vk Lkopkr vi r vj Lkop

+
X

i;j;k 2 [2p]:i = j 6= k

kaj kkakkkr vi r vk Lkopkr 2
vi

Lkop

+
X

i;j;k 2 [2p]:i = k6= j

kaj kkakkkr vi r vj Lkopkr 2
vi

Lkop: (25)

Recall that h = 1=p, therefore, by inequality (24), the �rst term in the inequality above can
be bounded by

X

i;j;k 2 [2p]:i = j = k

kaj k2kr 2
vi

Lk2
op � (2L=h)2

X

j

kaj k2 = 4L 2p2:

Using inequality (23), the second term in the RHS of inequality (25) is

X

i;j;k 2 [2p]:( i 6= j )^ (i 6= k)

kaj kkakkkr vi r vk Lkopkr vi r vj Lkop

� L 2
X

i;j;k 2 [2p]:( i 6= j )^ (i 6= k)

kaj kkakk

� L 2
X

i;j;k 2 [2p]:( i 6= j )^ (i 6= k)

kaj k2 + kakk2

2

=
(2p � 1)L 2

2

X

i 2 [2p]

0

@
X

j 2 [2p]:i 6= j

kaj k2 +
X

k2 [2p]:i 6= k

kakk2

1

A

=
(2p � 1)L 2

2

X

i 2 [2p]

2(1 � k ai k2)

= (2 p � 1)2L 2 � 4p2L 2:
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Finally, the last two terms in inequality ( 25) can each be bounded by

X

i;j;k 2 [2p]:i = j 6= k

kaj kkakkkr vi r vk Lkopkr 2
vi

Lkop � (2L=h) � L
X

j;k 2 [2p]:j 6= k

kaj kkakk

= 2pL2
X

j;k 2 [2p]:j 6= k

kaj kkakk

� 2pL2
X

j;k 2 [2p]:j 6= k

kaj k2 + kakk2

2

= pL2
X

j 2 [2p]

0

@kaj k2 +
X

k2 [2p]:k6= j

kakk2

1

A

= pL2
X

i 2 [2p]

�
kaj k2 + (1 � k aj k2)

�

= 2p2L 2:

The bounds on these four terms combined with inequality (25) tells us that


 (r 2L)a


 2

� 12L 2p2:

Taking square roots along with the de�nition of the operator norm in equation (21) completes
the proof.

B.3 Proof of Lemma 7

Lemma 7. For any weight matrix V 2 R2p� (d+1) , kr V Lk �
p

2pminf L (V ); 1g:

Proof Recall the de�nition of gs = (1 + exp ( ysf V (xs))) � 1. By using the expression for the
gradient of the loss

kr V Lk2 =
2pX

i =1

kr vi L(V )k2

=
1
n2

2pX

i =1







nX

s=1

gs� 0(vi � xs)ysxs







2

=
1
n2

2pX

i =1

nX

s=1

nX

q=1

gsgq� 0(vi � xs)� 0(vi � xq)ysyqxs � xq:

By de�nition we know that j� 0(vi � xs)j < 1 for all s 2 [n] and jysyqxs � xqj � 1 for any pair
s; q 2 [n]. Therefore,

kr V Lk2 �
1
n2

2pX

i =1

nX

s=1

nX

q=1

gsgq =
2p
n2

nX

s=1

nX

q=1

gsgq:

Sincegk ; g` � 1, this implies kr V Lk2 � 2p.
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To get the stronger bound whenL(V ) is small, by Lemma20, Part 1 we know that gsgq �
L sL q. Thus,

kr V Lk2 �
2p
n2

0

@
nX

s=1

nX

q=1

L sL q

1

A = 2p

 
1
n

nX

s=1

L s

! 2

= 2pL(V )2

completing the proof.

B.4 Proof of Lemma 8

Lemma 8. If � t L t � 1
30p , then L t+1 � L t � 5� t kr L t k2

6 :

Proof In order to apply Lemma 5, we would like to bound kr 2
W Lkop for all convex com-

binations W of V (t ) and V (t+1) . For N =
l p

2pkV ( t +1) � V ( t ) k
L t

m
, we will prove the following by

induction:

For all s 2 f 0; : : : ; N g, for all � 2 [0; s=N], for W = �V (t+1) + (1 � � )V (t ) ,
kr 2

W Lkop � 10pL t .

The base case, wheres = 0 follows directly from Lemma 6. Now, assume that the inductive
hypothesis holds from somes, and, for � 2 (s=N; (s+1) =N], considerW = �V (t+1) +(1 � � )V (t ) .
Let fW = ( s=N)V (t+1) +(1 � s=N)V (t ) . Applying Lemma 5 along with the inductive hypothesis,
L (fW ) � L t . Applying Lemma 7,

L(W ) � L (fW ) + (
p

2p)kW � fW k

� L t +
p

2pkV (t+1) � V (t )k
N

� 2L t :

Applying Lemma 6, this implies kr 2
W Lkop � 10pL(V (t ) ), completing the proof of the inductive

step.
So, now we know that, for all convex combinationsW of V (t ) and V (t+1) , kr 2

W Lkop �
10pL(V (t ) ). Applying Lemma 5, we have

L t+1 � L t �
5� t kr L t k2

6
;

which is the desired result.

B.5 Proof of Lemma 9

Lemma 9. If  : (0; M ] ! R is a continuous, concave function such thatlim � ! 0+  (� ) exists.
Then the in�mum of

P n
i =1  (zi ) subject to z1; : : : ; zn > 0 and

P n
i =1 zi = M is  (M ) + ( n �

1) lim � ! 0+  (� ).
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Proof If n = 1 the lemma is trivial. Consider the casen > 1. Consider an arbitrary feasible
point z1; : : : ; zn with z1; : : : ; zn > 0 and

P n
i =1 zi = M . Assume without loss of generality

that z1 � z2 � : : : � zn . For an arbitrarily small � > 0, we claim that the point z1 + z2 �
�; �; z 3; : : : ; zn is at least as good. Since is concave

 (z1) �
z2 � �

z1 + z2 � 2�
 (� ) +

z1 � �
z1 + z2 � 2�

 (z1 + z2 � � ); and

 (z2) �
z1 � �

z1 + z2 � 2�
 (� ) +

z2 � �
z1 + z2 � 2�

 (z1 + z2 � � ):

So by adding these two inequalities we infer

 (z1 + z2 � � ) +  (� ) +
nX

i =3

 (zi ) �  (z1) +  (z2) +
nX

i =3

 (zi ):

Repeating this for the other (n � 2) components of the solution, we �nd that

 (M � (n � 1)� ) + ( n � 1) (� ) �
nX

i =1

 (zi ):

Since is a continuous function by taking the limit � ! 0+ we get that,

 (M ) + ( n � 1) lim
� ! 0+

 (� ) �
nX

i =1

 (zi ):

Given that z1; : : : ; zn was an arbitrary feasible point, the previous inequality establishes our
claim.

C Reduction to the Case of No Bias with Random Initialization

We once again consider the process of training a model using(~x1; y1); : : : ; (~xn ; yn ), where ~xs

is de�ned as in Appendix A.
Let e� =

p
2� . A sample from N (0; e� 2) can be generated by sampling fromN (0; � 2), and

scaling the result up by a factor of
p

2.
For some� > 0, and � 0; � 1; � 2; : : : > 0, h � 0, consider the joint distribution on

(� (0) ; eV (0) ); (� (1) ; eV (1) ); : : :

de�ned as follows. First, � (0) ; � (1) ; : : : are generated as described in Section2.4. Each row ~v(0)
i

of eV (0) 2 R2p� (d+1) is
p

2(v(0)
i 1 ; : : : ; v(0)

id ; b(0)
i ) (so that they are mutually independent draws

from N (0; 2� 2)).
De�ne eL as in Appendix A: informally, L , but without the bias terms.
Then, for ~� 0 = 2 � 0; ~� 1 = 2 � 1; : : : > 0, we de�ne eV (1) ; eV (2) ; : : : to be the iterates of gradient

descent applied toeL , except replacing� 0; � 1; � 2; : : : by ~� 0; ~� 1; ~� 2; : : :.
Arguing as in Appendix A, except starting with round 0, we can see that, for allt,

ˆ for all i , ~v(t )
i =

p
2(v(t )

i 1 ; : : : ; v(t )
id ; b(t )

i )
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ˆ for all i and all s, ~v(t )
i � ~xs = v(t )

i � xs + b(t )
i , so that eL( eV (t ) ) = L(� (t ) ).

For each clusterk, de�ne ~� k by ~� k =
�

� k 1p
2

; : : : ; � kdp
2

; 1p
2

�
: Note that k~xs � ~� kk = kxs � � k kp

2
and, for all clusters k and `

~� k � ~� ` =
� k � � ` + 1

2
:

D Proof of Lemma 15

We begin by restating the lemma here.

Lemma 15. There exists a real-valued function� such that, for all (x1; y1); : : : ; (xn ; yn ) 2
Sd� 1 � f� 1; 1g, for all small enoughC2 and all large enoughC3, with probability 1 � � over
the draw of V (0) , all of the following hold.

1. For all s 2 [n],

X

i 2 I + s

v(0)
i � xs � p� (h; � 0; � ) � 1; and

X

i 2 I � s

v(0)
i � xs � p� (h; � 0; � ) + 1 :

2. For all sampless 2 [n],

(1=2 � o(1))p � j I + sj � (1=2 + o(1))p; and

(1=2 � o(1))p � j I � sj � (1=2 + o(1))p:

3. For all sampless 2 [n]

1
2

� o(1) � g0s �
1
2

+ o(1):

4. For all clusters k 2 [4],

jf i 2 [2p] : 8 s 2 K k ; i 2 I + s)gj �
�

1 �
p

r
2

� o(1)
�

p; and

jf i 2 [2p] : 8 s 2 K k ; i 2 I � s)gj �
�

1 �
p

r
2

� o(1)
�

p:

5. For all pairs s; q 2 [n] such that ys 6= yq,

�
�
�
n

i 2 [2p] : (i 2 I + s) ^
�

v(0)
i � xq � 0

�o �
�
� �

�
1
3

+
�
4

+ r + o(1)
�

p; and

�
�
�
n

i 2 [2p] : (i 2 I � s) ^
�

v(0)
i � xq � 0

�o �
�
� �

�
1
3

+
�
4

+ r + o(1)
�

p:
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6. For all sampless 2 [n],

�
�
�
�

�
i 2 [2p] :

�
� � 0

�
1
2

+ 2(� + r )
�

� v(0)
i � xs � h + 4 � 0

�
^ (ui 6= ys)

� �
�
�
�

�

 p
2

�
p

�
(h + 5 � 0(2 + � + r ))

!

p:

7. The norm of the weight matrix after one iteration satis�es 3
5

q
d

p� � k V (1) k � 3
q

d
p� .

The di�erent parts of the lemma are proved one at a time in the subsections below. The
lemma holds by taking a union bound over all the di�erent parts. Throughout the proof of
this lemma we �x the samples (x1; y1); : : : ; (xn ; yn ) 2 Sd� 1 � f� 1; 1g. Conditioned on their
value, for all i 2 [2p] and for all s 2 [n], the random variablesv(0)

i � xs � N (0; � 2).

D.1 Proof of Part 1

Consider a �xed sample s. Without loss of generality, suppose that ys = 1 . We want to
demonstrate a high probability lower bound on

X

i 2 I + s

v(0)
i � xs =

X

i 2 [p]

(v(0)
i � xs)1i 2 I + s :

Now the expected value of this sum,

E

2

4
X

i 2 [p]

(v(0)
i � xs)1i 2 I + s

3

5 = pE
h�

v(0)
1 � xs

�
112 I + s

i
:

Choose the function� in the statement of the result to be

� (h; � 0; � ) := E
h�

v(0)
1 � xs

�
112 I + s

i
:

By applying Hoe�ding's inequality [see Ver18, Theorem 2.6.2] (sincev(0)
i � xs � N (0; � 2),

the truncated random variable (v(0)
i � xs)1i 2 I + s is also c1� -sub-Gaussian for an appropriate

positive constant c1),

P

2

4
X

i 2 I + s

v(0)
i � xs � E

2

4
X

i 2 I + s

(v(0)
i � xs)

3

5 � �p

3

5 � exp
�
� c2� 2p=� 2�

= exp
�

� c2� 2p2+ �
�

since� = 1=p1=2+ �= 2. Setting � = 1=p we get

P

2

4
X

i 2 I + s

v(0)
i � xs � E

2

4
X

i 2 I + s

(v(0)
i � xs)

3

5 � 1

3

5 � exp
�

� c2p�
�

:
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Since p � logC3 (nd=� ), for any C3 � c3=� , for a large enough constantc3 we can establish
that

P

2

4
X

i 2 I + s

v(0)
i � xs � E

2

4
X

i 2 I + s

(v(0)
i � xs)

3

5 � 1

3

5 �
�

20n
:

Finally, a union bound over all n samples completes the proof forI + s:

P

2

49s 2 [n] :
X

i 2 I + s

v(0)
i � xs � E

2

4
X

i 2 I + s

(v(0)
i � xs)

3

5 � 1

3

5 �
�
20

:

An identical argument holds for the sum:
P

i 2 I � s
v(0)

i � xs which completes the proof of this
part of the lemma.

D.2 Proof of Part 2

Consider a samples. Without loss of generality, suppose thatys = 1 . Recall the de�nition of
the set

I + s = f i 2 [2p] : v(0)
i � xs � h + 4 � 0 and ui = ys = 1g:

Note that the variable v(0)
i � xs has a Gaussian distribution with zero-mean and variance� 2.

Also, recall that ui = 1 for all i 2 [p]. Therefore, for eachi 2 [p],

� := P
h
v(0)

i � xs � h + 4 � 0

i
=

1
2

� P
h
v(0)

i � xs 2 [0; h + 4 � 0]
i

(i )
=

1
2

� O
�

h + � 0

�

�

=
1
2

� O

 
1=p+ 1=p1=2+ �

1=p1=2+ �= 2

!

=
1
2

� o(1);

where(i ) follows by an upper bound of1=(�
p

2� ) on the density of a Gaussian random variable
with variance � 2. A Hoe�ding bound implies that, for any � > 0

P
h�
�
� jI + sj � �p

�
�
� � �p

i
� 2 exp

�
� c0� 2p

�
:

Thus by a union bound over all samples

P
h
9s 2 [n] :

�
�
� jI + sj � �p

�
�
� � �p

i
� 2n exp

�
� c0� 2p

�
:

Setting � = 1=p1=4 and recalling that � = 1=2 � o(1) and p � logC3 (nd=� ) completes the
argument for the sets I + s. An identical argument goes through for the second claim that
establishes a bound on the size of the setsI � s.
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D.3 Proof of Part 3

By de�nition g0s =
�

1 + exp
�

ys
P 2p

i =1 ui � (v0
i � xs)

�� � 1
. Recall that v(0)

i is drawn from a zero-

mean Gaussian with variance� 2I . Therefore, for eachi , v(0)
i � xs is a zero-mean Gaussian with

variance � 2 (since kxsk = 1 ). For ease of notation let us de�ne � i := v(0)
i � xs. The sigmoid

function 1=(1 + exp( t)) is 1-Lipschitz. Therefore,
�
�
�
�
�
�

1

1 + exp
�

ys
P 2p

i =1 ui � (� i )
� �

1

1 + exp
�

ysE
hP 2p

i =1 ui � (� i )
i�

�
�
�
�
�
�

�

�
�
�
�
�

2pX

i =1

ui � (� i ) � E

" 2pX

i =1

ui � (� i )

#�
�
�
�
�
:

Additionally, by its de�nition the Huberized ReLU � is also1-Lipschitz. Therefore for any pair
z1; z2 2 R2p

�
�
�
�
�

2pX

i =1

ui (� (z1i ) � � (z2i ))

�
�
�
�
�

�
2pX

i =1

j� (z1i ) � � (z2i )j �
2pX

i =1

jz1i � z2i j = kz1 � z2k1

�
p

2pkz1 � z2k:

Hence, the functionys
P 2p

i =1 ui � (� i ) is
p

2p-Lipschitz with respect to its argument

(� 1; : : : ; � 2p):

By the Borell-Tsirelson-Ibragimov-Sudakov inequality for the concentration of Lipschitz func-
tions of Gaussian random variables [seeWai19, Theorem 2.4],

P

" �
�
�
�
�

2pX

i =1

ui � (� i ) � E

" 2pX

i =1

ui � (� i )

#�
�
�
�
�

� �

#

� 2 exp
�

�
� 2

4p� 2

�
:

Recall that � = 1=p1=2+ �= 2, thus,

P

" �
�
�
�
�

2pX

i =1

ui � (� i )) � E

" 2pX

i =1

ui � (� i ))

#�
�
�
�
�

� �

#

� 2 exp
�

� c1p� � 2
�

:

By choosing� = 1=p�= 4,

P

" �
�
�
�
�

2pX

i =1

ui � (� i )) � E

" 2pX

i =1

ui � (� i ))

#�
�
�
�
�

�
1

p�= 4

#

� 2 exp
�

� c2p�= 2
�

:

This tells us that with probability at least 1 � 2 exp(� c2p�= 2),

1

1 + exp
�

ysE
hP 2p

i =1 ui � (� i ))
i� �

1
p�= 4

�
1

1 + exp
�

ys
P 2p

i =1 ui � (� i ))
�

�
1

1 + exp
�

ysE
hP 2p

i =1 ui � (� i ))
i� +

1
p�= 4

: (26)
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Next, we calculate the value of E
hP 2p

i =1 ui � (� i ))
i
. Note that all the random variables

f � i gi 2 [2p] are identically distributed. Recall that, ui = 1 if i 2 f 1; : : : ; pg and ui = � 1 if
i 2 f p + 1 ; : : : ; 2pg, thus

E

" 2pX

i =1

ui � (� i )

#

= E

" pX

i =1

� (� i )

#

� E

2

4
2pX

i = p+1

� (� i )

3

5 = pE [� (� 1)] � pE[� (� 1)] = 0 :

Thus by inequality ( 26) we know that with probability at least 1 � 2 exp(� c2p�= 2)

1
2

� o(1) �
1

1 + exp(ys
P 2p

i =1 ui � (v(0)
i � xs))

�
1
2

+ o(1):

A union bound over all n samples completes the proof, sincep � logC3 (nd=� ) for a large
enough constantC3.

D.4 Proof of Part 4

We will �rst prove the �rst claim of this part of the lemma. Without loss of generality consider
the cluster K1 (recall that for all examples s 2 K 1, ys = 1 ). For any pair s; q 2 K 1

P
h
v(0)

i � xs � h + 4 � 0 and v(0)
i � xq � h + 4 � 0

i

� P
h
v(0)

i � xs � 0 and v(0)
i � xq � 0

i
� P[v(0)

i � xs 2 [0; h + 4 � 0]] � P[v(0)
i � xq 2 [0; h + 4 � 0]]

(i )
� P

h
v(0)

i � xs � 0 and v(0)
i � xq � 0

i
� O

�
h + � 0

�

�

= P
h
v(0)

i � xs � 0 and v(0)
i � xq � 0

i
� O

 
1=p+ 1=p1=2+ �

1=p1=2+ �= 2

!

(ii )
=

1 � arccos(xs � xq)=�
2

� o(1)

(iii )
�

1 � arccos(1� 2r )=�
2

� o(1)

�
1 �

p
r

2
� o(1)

where(i ) follows by an upper bound of1=(
p

2�� ) on the density of a Gaussian random variable,
(ii ) follows by noting that the conditional probability of v(0)

i � xq � 0 conditioned on the event

that v(0)
i � xs � 0 is 1 � arccos(xs �xq )

� , and (iii ) follows sincexs � xq � 1 � 2r by Lemma 21.

De�ne � := P
h
v(0)

i � xs � h + 4 � 0 and v(0)
i � xq � h + 4 � 0

i
. A Hoe�ding bound implies that,

for any � > 0

P
h�
�
�
n

i 2 [p] :
�

v(0)
i � xs � h + 4 � 0

�
^

�
v(0)

i � xq � h + 4 � 0

�o �
�
� � (� � � )p

i
� exp

�
� c1� 2p

�
:

Recall the de�nition of the set I + s =
n

i 2 [2p] : (ui = ys = 1) ^
�

v(0)
i � xs � h + 4 � 0

�o
. There-

fore, a union bound over all sample pairss; q 2 K 1 implies that

P[jf i 2 [p] : 8 s 2 K 1; i 2 I + sgj � (� � � )p] � n2 exp
�
� c1� 2p

�
:
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Finally, by taking a union bound over all 4 clusters we get that

P[9k 2 [4] : jf i 2 [2p] : 8 s 2 K k ; i 2 I + sgj � (� � � )p] � 4n2 exp
�
� c1� 2p

�
:

Choosing � = 1=p1=4, recalling that � � (1 �
p

r � o(1))=2 and p � logC3 (nd=� ) for a large
enough constantC3 completes the proof of the �rst claim.

The second claim of this part of the lemma follows by an identical argument.

D.5 Proof of Part 5

Without loss of generality, consider a nodei 2 [p] with ui = 1 and a �xed pair s; q 2 [n] such
that ys = 1 and yq = � 1. Since each ofv(0)

i � xs and v(0)
i � xq are distributed as N (0; � 2), we

have

P[v(0)
i � xs � h + 4 � 0 and v(0)

i � xq � 0] � P[v(0)
i � xs � 0 and v(0)

i � xq � 0]

(i )
=

1 � arccos(xs �xq )
�

2
(ii )
�

1 � arccos((1+�) =2+2 r )
�

2

�
1
3

+
�
4

+ r;

if the bound C2 on r and � is small enough, where(i ) follows by noting that the conditional
probability of v(0)

i � xq � 0 conditioned on the event that v(0)
i � xs � 0 is 1 � arccos(xs �xq )

� , while
(ii ) follows since by Lemma21, xs � xq � (1 + �) =2 + 2r for samples whereys 6= yq.

Now, de�ne � := P[v0
i � xs � h + 4 � 0 and v(0)

i � xq � 0]; a Hoe�ding bound implies that, for
any � > 0

P[jf i 2 [p] : v(0)
i � xs � h + 4 � 0 and v(0)

i � xq � 0]gj � (� + � )p] � exp(� c0� 2p):

Choosing� = 1=p1=4 and recalling that � � 1
3 + �

4 + r along with a union bound over the pairs
of samples completes the proof of the �rst claim. An identical argument works to establish the
second claim.

D.6 Proof of Part 6

Without loss of generality, consider a nodei 2 [p + 1 ; : : : ; 2p] with ui = � 1 and �x a sample
s with ys = 1 . Since eachv0

i � xs is distributed as N (0; � 2), we have,

� := P
h
� � 0(1=2 + 2(� + r )) � v(0)

i � xs � h + 4 � 0

i
�

1

�
p

2�
(h + 5 � 0(1 + � + r )) ; (27)

where the bound on the probability above follows by an upper bound of1=(
p

2�� ) on the
density of a Gaussian random variable. A Hoe�ding bound implies that, for any� > 0

P
h
jf i 2 f p + 1 ; : : : ; 2pg : � � 0(1=2 + 2(� + r )) � v(0)

i � xs � h + 4 � 0gj � (� + � )p
i

� exp
�
� c0� 2p

�
:

By choosing � = 5� 0
�

p
2�

= 5p
2�p �= 2 , recalling the upper bound on� established in (27) and a

union bound over all the n samples completes the proof sincep � logC3 (nd=� ) for a large
enough constantC3.

37



D.7 Proof of Part 7

We know that each v(0)
i � N (0; � 2I (d+1) � (d+1) ). Thus by a concentration inequality for the

lower tail of a � 2-random variable with 2(d + 1) p degrees of freedom [seeLM00, Lemma 1] we
have that, for any � > 0

P

"
kV (0) k

p
2(d + 1) p

� �
p

1 � �

#

� exp(� (d + 1) p� 2=2):

Recall that � = 1=p1=2+ �= 2, thus by setting � = 1=32 we get that

P
�
kV (0) k �

6
p

d + 1
5p�= 2

�
� exp(� c1(d + 1) p):

Sincep � logC3 (nd=� ) for a large enough value ofC3, this ensures that

kV (0) k � 6
p

d + 1=(5p�= 2)

with probability at least 1 � �=c2. By the reverse triangle inequality,

kV (1) k � k V (0) k � � 0kr L 0k
(i )
� k V (0) k � � 0

p
2p �

6
p

d + 1
5p�= 2

�

p
2

p�

( ii )
�

3
5

s
d
p� ;

where(i ) follows by the bound on the norm of gradient established in Lemma7 and (ii ) follows
sinced � 2 under our clustering assumptions. Hence

P

"

kV (1) k �
3
5

s
d
p�

#

� 1 � �=c2; (28)

which establishes the desired lower bound on the norm ofV (1) . To establish the upper bound
we will use the Borell-TIS inequality for Lipschitz functions of Gaussian random variables [see
Wai19, Example 2.28]. By this inequality we have that, for any � > 0

P

"
kV (0) k

p
2(d + 1) p

� � (1 + � )

#

� exp(� (d + 1) p� 2):

Once again because� = 1=p1=2+ �= 2, by setting � = 1=32 we get that

P
�
kV (0) k �

3
p

d + 1
2p�= 2

�
� exp(� c1(d + 1) p):

Sincep � logC3 (nd=� ) for a large enough value ofC3, this ensures that

kV (0) k � 3
p

d + 1=(2p�= 2) � 5
p

d=2p�= 2

with probability at least 1 � �=c2. By the triangle inequality,

kV (1) k � k V (0) k + � 0kr L 0k
(i )
� k V (0) k + � 0

p
2p �

5
p

d
2p�= 2

+

p
2

p� � 3

s
d
p� ;
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where (i ) follows by the bound on the norm of gradient established in Lemma7. Hence

P

"

kV (1) k � 3

s
d
p�

#

� 1 � �=c2:

Combining this with inequality ( 28) above we get that

P

"
3
5

s
d
p� � k V (1) k � 3

s
d
p�

#

� 1 � 2�=c2

completing our proof.

E Auxiliary Lemmas

In this section we list a couple of lemmas that are useful in various proofs above.

Lemma 20. For any x 2 Rd and y 2 f� 1; 1g and any weight matrixV we have the following

1.
1

1 + exp (yf V (x))
� log(1 + exp( � yf V (x))) = L(V ; x; y):

2.
exp (yf V (x))

(1 + exp ( yf V (x))) 2 �
1

1 + exp (yf V (x))
� L (V ; x; y):

Proof Part 1 follows since for anyz 2 R, we have the inequality (1 + exp( z)) � 1 � log(1 +
exp(� z)) .

Part 2 follows since for anyz 2 Rd, we have the inequalityexp(z)=(1 + exp( z))2 � (1 + exp( z)) � 1.

Lemma 21. Given an r < 1 suppose that for anyk 2 [4] all sampless 2 K k satisfy the bound
kxs � � kk � r=

p
2 and for all k 2 [4], k� kk = 1 .

1. Then for any pair of clustersKk ; K ` such thatyk 6= y` , and � k � � ` � (1 + �) =2 we have,
for all s 2 K k and q 2 K `

xs � xq �
1 + �

2
+ 2 r:

2. Given a clusterKk , if s; s0 2 K k then,

xs � xs0 � 1 � 2r:

Proof Proof of Part 1: By evaluating the inner product and applying the Cauchy-Schwarz
inequality

xs � xq = ( xs � � k + � k ) � (xq � � ` + � ` )

= � k � � ` + ( xs � � k ) � � ` + � k � (xq � � ` ) + ( xs � � k ) � (xq � � ` )

�
1 + �

2
+

p
2r +

r 2

2

�
1 + �

2
+ 2 r:

39



Proof of Part 2: Recall that k� kk = 1 . Thus, given two sampless; s0 2 K k ,

xs � x0
s = ( xs � � k + � k ) � (xs0 � � k + � k )

= � k � � k + ( xs � � k ) � � k + � k � (xs0 � � k ) + ( xs � � k ) � (xs0 � � k )

� 1 �
p

2r �
r 2

2
� 1 � 2r

as claimed.
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